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Teaser After more than three decades of the Orphan Drug Act, drug development for rare
diseases remains a challenge. Human-on-a-chip technology holds the promise to drive

orphan drug development to the next level.
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Drug development for rare diseases, classified as diseases with a prevalence

of < 200 000 patients, is limited by the high cost of research and low target

population. Owing to a lack of representative disease models, research has

been challenging for orphan drugs. Human-on-a-chip (HoaC) technology,

which models human tissues in interconnected in vitro microfluidic

devices, has the potential to lower the cost of preclinical studies and

increase the rate of drug approval by introducing human phenotypic

models early in the drug discovery process. Advances in HoaC technology

can drive a new approach to rare disease research and orphan drug

development.

Introduction
Rare, or orphan diseases, defined in the USA as diseases that affect < 200 000 individuals at a given

time, remain an underrepresented area of medical and pharmaceutical research. Although the

incidence of any single disease is low, there are > 7000 established rare diseases worldwide, and it

is estimated that 25 million people suffer a rare disease in the USA alone [1,2]. Because of the

expensive and rigorous testing required before a new drug enters the market, most drug

development has been historically limited to drugs targeting diseases with high incidence and

prevalence. The Orphan Drug Act (ODA), which was passed in the USA in 1983, provides

incentives for research into ‘orphan’ diseases that would otherwise not recover costs of develop-

ment, most of which are rare diseases. This legislation was a landmark for drug development for

rare diseases, and many consider the ODA one of the most successful US legislative actions in

recent history [1]. From 1983 to 2004, 248 orphan drugs were approved in the USA, a significant

increase compared with the ten drugs approved before 1983. Although medical and social issues

caused by rare diseases have been increasingly recognized by the public and pharmaceutical

industry over the past two decades, almost all rare diseases still lack a cure or effective treatment

strategy [3].
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Rare disease drug development is hampered by the current

issues affecting the pharmaceutical industry at large, namely

the high cost of bringing new therapeutic agents to market com-

bined with low success rate of regulatory approval (�9.6% for

drugs in 2016) [4]. This is especially true for rare diseases, because

many do not have enough patients to perform statistically signifi-

cant clinical trials and thus have a limited return on investment.

The low success rate of drug approval is largely the result of the

poor predictive power for drug efficacy and toxicity of current

preclinical in vitro and in vivo models. Animal models are impor-

tant tools for drug discovery and development but, in many cases,

do not adequately model drug responses observed in the human

body [5]. The use of animal models has shown poor predictive

power for human response to drugs owing to cross-species dis-

crepancies (i.e., differences in drug metabolism) and increasing

ethical concerns surrounding animals in research drives a need for

improved models [5,6]. Most in vitro cell culture assays lack com-

plexity and do not model many physiological processes including

shear stress and tissue–tissue or organ–organ communication [7].

In the past few decades, advances in nanotechnology, micro-

fabrication and cell biology techniques have enabled the develop-

ment of microphysiological systems (MPS), also called ‘organ-on-

a-chip’ models or, when multiple organs are included on the same

platform, ‘body-on-a-chip’ (BoaC) or ‘human-on-a-chip’ (HoaC)

models. These platforms, when combined with induced pluripo-

tent stem cell (iPSC) technology, enable the development of

patient-specific phenotypic models of rare diseases where dis-

ease-specific cells can be differentiated from iPSCs in a cost-effec-

tive and disease-relevant approach. These technical advances

enabled the ‘Microphysiological Systems for Drug Efficacy and

Toxicity Testing Program’ initiatives by the NIH and DARPA in

2012 and have encouraged the maturation and commercialization

of this technology [8]. This review discusses the applications of

human-based, multi-organ, in vitro models for improved drug

discovery and the importance of pharmacokinetics/pharmacody-

namics (PK/PD) models and how this can be applied to develop-

ment of orphan or rare disease drugs.

Advanced in vitro models for drug discovery
The limitations of using animal models to study human diseases

and develop therapeutics have been previously established [9]; all

animal models exhibit genetic and physiological differences from

humans regarding basal metabolism, drug PK/PD, immune system

function and lifespan [9]. All of these factors influence the effec-

tiveness of animal models for drug discovery and disease model-

ing. Further, genetically identical lines of laboratory animals,

although ideal for research purposes where limiting variability

is crucial, do not account for the complexity and variability

observed between humans, especially in the case of rare human

diseases and disorders [10].

In vitro human-based models for drug discovery typically in-

volve a combination of plate-based assays with computational

modeling or in silico analysis; this strategy has been effective in

identifying novel drug combinations and new applications of

established drugs in combinatorial drug discovery. Advances in

miniaturization and robotics have enabled development of assays

based on 96- to 1536-well plates, which have the advantage of

being automated and high throughput. However, although these
2140 www.drugdiscoverytoday.com
assays predict cell-specific drug response, they are typically not

physiological – for example, many liver models use isolated micro-

somes rather than hepatocytes, leading to a bias toward oxidation

and an incomplete enzyme–cofactor spectrum. Computational

modeling has led to advances in drug treatment, especially for

complex, multifactorial diseases like cancer, metabolic syndrome

and autism. This approach relies on existing in vivo experimental

data to predict drug responses; therefore, applications are limited

for rare diseases, which often lack preclinical and clinical data [11].

Additionally, identification of side-effects is difficult because the

specific phenotype of an off-target response is not easily predicted

and varies based on genetic profile [11]. To address the technical

and ethical limitations of animal or human models for research

purposes, there has been increased focus on developing pheno-

typic human models instead of target-based models to study

disease.

HoaC technology integrates cell culture with BioMEMs engi-

neering, surface chemistry and mechatronics, enabling phenotyp-

ic modeling of rudimentary organ physiology in a microfluidic

device. These devices often include cells grown on sophisticated

electronic devices like microelectrode arrays (MEAs) and mechan-

ical systems such as microcantilever arrays that facilitate nonin-

vasive functional measurements of disease or drug effects using

these hybrid 3D devices. With the potential to integrate multiple

tissues or organ system surrogates, HoaC models provide a unique

platform for measuring drug response and toxicity, and for study-

ing the influence of a disease state on the other organ modules in a

controlled environment.

Current microfluidic systems range in sophistication from mod-

els of a single organ (organ-on-a-chip) to larger-scale combinations

of multiple organs or tissues connected through microfluidics in

one device. Single-organ models have been developed for most

organs, including white adipose tissue [12,13], heart [14], liver

[15], skeletal muscle [16], lung [17,18], gastrointestinal (GI) tract

[19], kidney [20], reproductive organ [21], central nervous system

(CNS) [22], peripheral nervous system (PNS) [23], skin [24] and

bone [25]. Developing a microfluidic device to replicate a human

organ enables sophistication in modeling beyond that of cells in

standard tissue culture; an organ-on-a-chip model can provide

more physiologically relevant architecture, including 3D systems

that can better replicate in vivo physiology [26], or can provide the

flow and shear stress integral to the maturation and physiology of

an organ. To enable high-throughput testing or drug screening,

models composed of tens or hundreds of systems that can be run

simultaneously have been developed [27,28].

Multi-organ HoaC models integrate two or more tissues or cell

types to model the relationship between organs, including para-

crine and endocrine signaling and determination of the effects of

tissue metabolites on other tissues in shared medium [29,30]; these

systems mimic the in vivo effects of organ-specific cytokines on the

body, or of drug metabolites produced by the liver in other organs

[31]. Modules can be connected by blood-memetic medium in

either bidirectional or controlled unidirectional flow [32,33].

HoaC models mimicking barrier tissue physiology have also been

developed; for example, models of the GI tract, lung epithelium

and blood–brain barrier (BBB) have been well characterized

[34–37]. This also enables modeling of specific biological process-

es, such as tumor invasion [25,38] and skin penetration [39,40].
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As more tissue and organ modules are established in vitro, there

is increasing potential for complex, multi-process HoaC models,

mimicking the complex interactions that occur between organ

systems and potentially enable whole-body analysis in a single

integrated system, the goal of HoaC technology. Toward that end,

the Shuler Lab at Cornell University published a 13-organ recir-

culating system that maintained viability of all cell types for up to

7 days [41]. Additionally, ten connected organ module systems

have been included in the PhysioMimix system [42].

The integration of patient-specific iPSCs also enables modeling

of diseases utilizing this system [43]. This is especially applicable

for developing disease-specific phenotypic models for orphan

diseases where it might not be possible or cost effective to establish

animal models for the disease. With increasing sophistication in

tissue scaffolds, device design and fabrication, and the application

of state-of-the-art molecular techniques, HoaC technology shows

promise for fine-tuned, personalized medicine in rare diseases and

the establishment of more-effective drug development programs

while minimizing the risks involved with traditional research on

animals or humans.

Cell sources
In recent years, advances in cell culture resources and stem cell

technologies have expanded options for the cellular components

utilized in HoaC systems. Whereas some in vitro models use animal

cells, human-based models enable more-accurate and improved

drug response prediction [44]. Primary human cells are now largely

available for many cell types, along with specialized supplies,

nutrients and growth factors needed to maintain them, many

of them in serum-free formulations for minimizing variability

introduced by animal serum. However, in the case of highly

differentiated and non-proliferative cells such as neurons or car-

diomyocytes, obtaining primary cells can be difficult and expen-

sive. Additionally, any primary cells have a potential for

contamination with mycoplasma, viruses or other adventitious

agents that can interfere with in vitro viability and physiology and

can be difficult to obtain in the case of rare diseases. Primary

human cells often have genotypic and phenotypic instability

leading to the loss of complex differentiation [45], and cell culture

can drive change or loss of function, especially over many pas-

sages. To address these concerns, the commercialization of iPSC

technology provides an opportunity to culture patient-specific

cells that would otherwise be difficult to obtain in the large

quantities necessary for research purposes.

More importantly, the development of iPSC technology has

enabled the generation of specialized cells without the technical or

ethical concerns of obtaining human stem cells directly. The

protocol, first established in 2007, enabled the generation of

embryonic stem-cell-like cells from mouse somatic cells using four

growth factors: Oct3/4, Sox2, c-Myc and Klf4 [46]. The technique

was quickly applied to adult human somatic cells [47,48], and has

since expanded to a variety of accessible human cells and applied

to the fields of disease modeling, biological research and clinical

regenerative medicine. The combination of iPSC technology and

genome editing with CRISPR/Cas9 has made available unique cell

options, in which genetic mutations can be induced or removed to

model diseases in vitro [49]. The technique has been used to create

iPSC lines carrying mutations for rare diseases including cystic
fibrosis [50], Tay–Sachs disease [51], familial dysautonomia [52],

spinal muscular dystrophy [53] and Barth syndrome [54], among

others.

Flow methods
Compared with traditional in vitro cell culture, in which cells are

grown in static systems – flasks, plates and dishes – modern

microphysiological models support medium flow and recircula-

tion throughout the device, providing greater physiological rele-

vance. Few biological systems are static; blood pressure drives

movement of endogenous and exogenous molecules and cells

throughout the body, subjecting tissues to varying degrees of shear

stress and pressure necessary for proper maturation and physiolo-

gy [55]. These mechanical forces are crucial for the development,

maturation and survival of many tissues including lung, BBB, liver,

kidney and blood vessels [56–59]. HoaC systems have been devel-

oped to mimic this physiology using gravity or microfluidic pumps

and valves. Further automation of device function through the

integration of electronic sensors and controllers to monitor medi-

um pH, regulate medium handling and control value function

make high-content screening feasible [60]. The ability of HoaC

systems to mimic this important physiological process has been

established for organs including the endothelium [61] and kidney

nephrons [62].

In microphysiological models, fluid movement, shear stress and

perfusion flow can be tuned to match the corresponding biological

condition [63]. Flow can be finely controlled using a pump-based

system, which can be used to drive a specific pressure or to study

effect of flow dynamics on cells where a pressure gradient is crucial

for physiology, for example glomerular filtration in the kidney

[64,65]. However, pump systems can be large, difficult to main-

tain, contain significant dead volumes and the added equipment

can increase risk of contamination. Alternatively, pumpless sys-

tems enable replication of physiological shear stress in compact

systems driven by gravity, surface tension or osmosis, potentially

with the use of an external power source such as a rocker [32,66].

Recent advances in chip geometry support unidirectional flow in

gravity-driven microfluidic models [63,67].

Architecture
The scaffolds and extracellular matrix (ECM) materials used in

HoaC construction are integral for replicating a physiological

environment and maintaining in vitro function. Optimal physio-

logical relevance is achieved through systems that replicate the 3D

architecture or function of biological systems, through cellular

structure, scaffold or flow. Allowing cells to contact ECM, and

potentially other cells, results in a healthier cell phenotype, im-

proved differentiation and more-representative cell behavior [68].

In vitro models have been designed using decellularized scaffolds,

including a recellularized rat liver [69] and heart [70]. Hydrogels,

polymer networks that hold up to 99% water by weight, are

effective for modeling soft tissue environments; tissue hydrogel

scaffolds can be composed of ECM and cellular adhesion mole-

cules and dosed with growth factors to support cell growth and

movement to mimic functional tissues. In conjunction with ink-

jet, microextrusion or laser-assisted bioprinting, hydrogels have

been used for the construction of 3D tissues in vitro [71]. This has

been applied for modeling of the intestinal epithelium [72],
www.drugdiscoverytoday.com 2141
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fibroblast-driven wound healing [73] and tumor angiogenesis [38].

ECM modulation has applications for modeling dysfunctional

interaction between cell membranes and the ECM in rare diseases

including myasthenia gravis, scleroderma, Marfan syndrome and

Ehlers–Danlos syndrome, where extracellular architecture is dam-

aged. However, 2D models provide the advantage of simplicity and

have been shown to perform as well as or better than 3D models for

tissue maturation and longevity in some cases and, when integrat-

ed with BioMEMs devices to form hybrid 3D devices, can be more

readily integrated into multi-organ systems (Fig. 1) [32].

Physiologically based pharmacokinetics and
pharmacodynamics mathematical modeling
PK is the segment of pharmacology that studies the time-course of

the absorption, distribution, metabolism and excretion (ADME)

profile of a drug that results from its administration. PD is the area

of pharmacology that studies the time-course of the effect of drug

in the body [74,75]. Simply, PK studies are ‘what the body does to a

drug’ and PD studies are ‘what a drug does to the body’ [76]. One

important tool used to guide the design of HoaC and drug devel-

opment is mathematical modeling, such as PK and/or PD models.

PK models can be divided into compartmental and noncompart-

mental models. Compartmental models describe PK parameters

through nonlinear regression analysis and describe the body as a

finite number of interconnected, well-mixed and kinetically ho-

mogeneous compartments [75,77]. The degree of complexity var-

ies between compartmental models; the simplest is a one-

compartment model, which represents the body as a single uni-

form compartment but, to provide insight into drug mechanism, a

more physiologically relevant model is required (Fig. 2). This is
(a)
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FIGURE 1

Multi-organ microphysiological system consisting of four different human organ
Schematic for noninvasive technology to monitor cellular function in the 4-orga
Adapted, with permission, from [32,143].
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accomplished though physiologically based pharmacokinetics

(PBPK) models, where organs are represented as separate compart-

ments connected with a hypothetical blood flow [75]. PBPK mod-

els are used to predict the concentration profiles for the parent

compound and its metabolites associated with compound

dosing [31].

PD models can describe the effect of a drug as a linear function

of concentration, where the effect will increase with higher

concentrations of the drug, or as a nonlinear function where a

maximum effect will be defined (Emax model). PD and PK models

can be combined to create a PK/PD model to analyze the time-

dependent changes of the physiological effect of a specific dose of

the drug. In this modeling approach, the physiological outcome

(PD) is predicted based on the PK profile associated with a certain

dose of a drug. For example, Sung and collaborators created a

PBPK model and a PD model separately to describe the ADME and

efficacy of a chemotherapeutic agent (5-fluorouracil), and then

combined the two models to create a ‘PK/PD model-on-a-chip’,

which demonstrated significant changes in cancer cell viability

between static and dynamic drug concentrations [78]. A more

extensive description of PBPK and PD models is reviewed else-

where [75].

PBPK and PD models can be especially useful in the develop-

ment of drugs for rare diseases by enhancing the number of

applications in clinical pharmacology particularly for specific

populations [79,80]. However, these models have only recently

been applied pharmaceutically; in 2014, the FDA released the

‘Strategic Plan for Accelerating the Development of Therapies

for Pediatric Rare Diseases’, which recognized the importance of

a PBPK approach by using it as a strategy to inform the design and
(b)
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FIGURE 2

Physiologically based pharmacokinetic (PBPK) and pharmacodynamic (PD) mathematical modeling schematic. (a) Concept of a PBPK model as a mathematical
representation of the human body, (b) one-compartment model, (c) two-compartment model, (d) PBPK ‘whole-human’ model. Adapted, with permission, from
[75,144].
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conduct of PK/PD studies and clinical trials for investigational

drugs in pediatric rare disease populations (http://www.fda.gov).

Disease-on-a-chip
As previously described, HoaC technology can be leveraged to

build physiologically relevant human tissue models with a dy-

namic microenvironment and complex intercellular interactions.

HoaC models can be developed using healthy tissues with normal

physiology or it can mimic a disease state in one or more tissues in

the same system. This design is often described as ‘disease-on-a-

chip’ (DoaC). DoaC models can be used to investigate drug toxicity

as well as efficacy, in the study of progression and treatment of

specific diseases.

One advantage of DoaC models is the ability to incorporate

patient-derived iPSCs. This allows doctors to develop patient-

specific treatment strategies by identifying therapies that are most

effective and least toxic in individual cases. For example, individ-

uals vary widely in their liver cytochrome P450 (CYP) enzyme

activity levels – the major enzyme pathways involved in drug

metabolism [81]. These differences can lead to substantial inter-

individual variability in rates of drug activation or elimination,

and consequently have a significant impact on patient tolerance of
a particular drug treatment protocol. Understanding these inter-

patient differences before treatment through the use of patient-

specific HoaC systems could greatly improve the efficacy and

minimize the toxicity of a drug treatment protocol. This kind of

precision medicine can be a powerful tool for understanding

complex diseases, such as cancer [82]. The next section of this

review will focus on discussing HoaC systems developed specifi-

cally for rare diseases.

Human-on-a-chip and rare diseases
Rare diseases represent a wide spectrum of disorders that can affect

almost any tissue, organ system or biological process in the body.

HoaC technology is capable of representing a disease state where

other models are limited or unavailable; human-based multi-organ

models have flexibility relating to which organ modules, cell types

and microfluidics to include, so platforms can be engineered to

recapitulate highly specific disease states. In rare diseases with a

genetic component, iPSC technology can be used that includes

relevant mutations or patient-specific cells to understand their effect

on relevant tissues. Because this technology has only recently begun

to be applied to rare disease research, this section will discuss recent

developments and potential applications of the technology.
www.drugdiscoverytoday.com 2143
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Autoimmune models
Autoimmune diseases occur when the adaptive immune system no

longer tolerates self-antigens and instead mounts an immune

response against them that leads to impaired function. There

are at least 80 defined autoimmune disorders, including type I

diabetes, rheumatoid arthritis, celiac disease, inflammatory bowel

disease, Graves’ disease, myasthenia gravis and systemic lupus

erythematosus, as well as many others defined as rare diseases

[83]. Autoimmune diseases arise when the body fails to differenti-

ate self from non-self; as normal physiological processes inactivate

or destroy lymphocytes that self-react, in pathological autoimmu-

nity, protective mechanisms fail to prevent an inflammatory

response [83]. Despite affecting > 23.5 million Americans the

cause of autoimmune disorders is poorly understood, and diseases

are typically managed rather than cured [83]. Almost any organ

can be targeted but, overall, autoimmune diseases share similar

effects and mechanisms. Autoimmune diseases disproportionally

effect women – 78% of those affected are female, especially during

childbearing years, suggesting a hormonal component [84], and

occur more frequently in certain ethnic groups, suggesting a

genetic component. Risk factors include previous viral infections

and some vitamin deficiencies. However, there is no single cause

and it has been proposed that these diseases occur as a complex

combination of genetic and environmental factors [85]. Because of

the difficulty in isolating any one factor in vivo, HoaC models are a

compelling platform for research into the causes and mechanisms

of autoimmune diseases.

Microphysiological models with recirculating medium can

model the cellular and soluble components of the immune system

and how they interact with tissues. HoaC models can be engi-

neered to replicate the 3D structure of relevant tissues, and can

house or contain circulating immune cells, including patient-

derived leukocytes [86]. Systems can also be infused with anti-

bodies or inflammatory molecules such as complement, cytokines

or chemokines for investigation into the role of specific immune

biomolecules or can use purified blood fractions to represent a

disease state. Although no comprehensive autoimmune system

model has been established to date, a number of immune system

HoaC models have been established [87], including models for the

thymus [88], lymph node [86] and hematopoietic bone marrow in

microfluidic [89] and 3D [90] platforms, as well as for leukocyte

intra- and extra-vasation, specifically neutrophil trafficking [91]

and transendothelial migration [92,93]. In vitro models have also

been established for modeling autoimmune diseases, including a

3D cartilage model for rheumatoid arthritis [94] and a colon crypt

model with potential for studying inflammatory bowel disease

[95].

There is a strong genetic component to autoimmunity, but this

link is not fully established. Although there are monogenic auto-

immune disorders, and some major histocompatibility complex

(MHC) mutations are strongly established as disease components,

mutations do not always have established effects and are generally

not predictive of disease [96]. This makes HoaC technology, where

iPSC and CRISPR technology can model mutations in vitro, a useful

platform for studying the genetic role in autoimmune responses.

Because autoimmune diseases vary significantly in severity be-

tween individuals, the potential to model combinations of genet-

ic, environmental and cellular components makes HoaC platforms
2144 www.drugdiscoverytoday.com
uniquely able to determine the most relevant factors in disease

progression for specific patients. For rare autoimmune diseases,

where incidence is too low to gather significant data on affected

individuals and shared risk factors, HoaC systems can potentially

be engineered with modules representing a patient’s own somatic

and immune cells to determine disease cause and to identify or test

relevant therapeutics as a personalized medicine application.

Neuromuscular junction models
The neuromuscular junction (NMJ) is a tripartite synapse formed

between motoneurons, skeletal muscle and Schwann cells in the

PNS [97]. Rare neuromuscular diseases comprise a range of acquired

and inherited disorders targeting motoneurons, skeletal muscle or

the NMJ – specifically, acute and chronic autoimmune peripheral

neuropathies including Guillian–Barré syndrome and myasthenia

gravis, respectively. Other peripheral neuropathies include amyo-

trophic lateral sclerosis (ALS) and the muscular dystrophies. Cur-

rently, there are no approved cures for neuromuscular diseases;

treatments focus on symptom management [98]. Contributing to

the absence of effective treatment options is the heterogeneity of

neuromuscular diseases and a lack of appropriate models to study.

For example, the muscular dystrophies are a group of > 30 genetic

diseases affecting �200 000 people annually in the USA and char-

acterized by progressive muscle weakness and atrophy of muscle

tissue, irrespective of nerve degeneration [99]. Duchenne’s muscu-

lar dystrophy (DMD), the most common MD, has been extensively

studied using mouse models [100]. DMD is caused by a mutation to

the dystrophin gene, located on the X chromosome, encoding the

dystrophin protein, which plays an integral part in linking the actin

cytoskeleton of the muscle cell to the ECM via the dystrophin–

glycoprotein complex [101]. The most common mouse model, the

mdx mouse, contains a premature stop codon in exon 23 that leads

to a loss of full-length dystrophin [102]. These mice exhibit a milder

phenotype compared with human DMD patients, living �80% as

long as control mice, significantly longer proportionally to diseased

human patients [103]. These mice exhibit muscle fiber necrosis and

inflammatory cell infiltration beginning �3 weeks of age. However,

after the 4-week period of extensive necrosis and elevated serum

creatine kinase, the damage begins to slow, and only mild necrosis is

present for the remainder of the mouse’s lifespan. This pathological

phenotype is significantly milder than that observed in DMD

patients [104]. The milder mouse phenotype has been attributed

to a compensatory upregulation in utrophin expression [104]. At

least five additional mdx mouse models have been generated, all

with similar phenotypes [100]. Recently, a human-based NMJ-on-a-

chip model composed of iPSC-derived motoneurons and primary

skeletal muscle myotubes lasting up to 21 days was developed [105].

The system uses a polydimethyle siloxane (PDMS) barrier with

microtunnels cast from a microfabricated silicon wafer. The barri-

er-partitioned motoneurons and myotubes are connected via tun-

nels where axons migrate through and innervate the myotubes

forming functional NMJs. The NMJ system measures the

functional transmission of signals from motoneurons to

skeletal muscle via neuromuscular junctions, with direct measure-

ments of the muscle function, and can be used for drug

testing (Fig. 3). Treatment of the NMJ-on-a-chip devices with neu-

rotoxins or myotoxins resulted in dose-dependent neuromuscular

dysfunction, indicating the sensitivity of the system for drug
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FIGURE 3

Neuromuscular junction (NMJ) platform. A microtunnel-based system (a) allows the neurons and skeletal muscle to remain in distinct compartments while
allowing axons to pass to the muscle side and innervate the myotubes; microfabricated bioMEMS enable direct electrical stimulation of motoneurons and direct
measurement of myotube contraction (lower panel). (b) Phase contrast images of myotubes on cantilevers (upper left) and motoneurons on microelectrode
array (MEA) electrodes (lower left), immunocytochemistry indicating axons (green) growing through tunnels and forming NMJs with myotubes (red) (right
panels). (c) Effect of drugs on the NMJ can be tested in the system, producing a dose–response curve, in this case using BOTOX as the NMJ blocking toxin. As the
concentration of BOTOX on the muscle-side increases the amplitude of the myotube contraction decreases. IC50 = 600 mU.
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discovery research aimed at neuromuscular physiology [105].

Utilizing motoneurons derived from diseased-patient iPSCs,

such a system could be used to investigate the dysfunctional neu-

romuscular signaling in rare diseases like ALS, as well as to screen

novel compounds for efficacy in treating the disease. Further, iPSC-

derived myoblasts, which have been differentiated by several

groups, could be used in the system to study muscle-centric rare

diseases such as the muscular dystrophies using mutant-iPSCs

[106]. HoaC models of functional neuromuscular junctions will

be useful tools for investigating neuromuscular degenerative dis-

eases owing to their ability to sensitively determine the acute and

chronic effects of compounds aimed at restoring neuromuscular

function.

Cancer models
A rare cancer, as defined by the National Cancer Institute, has an

incidence of < 150 new cases per million per year (15 per 100 000

per year). This corresponds to �40 000 new cases per year in the

USA. Rare cancers affect most major body regions and organ

systems including head and neck, digestive, reproductive, respira-

tory, urogenital, nervous and endocrine systems. Rare cancers also

include rare histological variants and molecular subtypes of com-
mon cancers, which can significantly influence progression, treat-

ment and prognosis [107]. For example, pleomorphic lobular

carcinoma is an extremely rare, aggressive variant of lobular

carcinoma with a poor prognosis [108]. Rare cancers are difficult

to study owing to their low incidence rate and, consequently, their

etiology and progression can be poorly understood making iden-

tifying a timely, highly effective therapeutic strategy difficult.

HoaC systems are an attractive model for studying cancer, and

rare cancers specifically, because of their modularity, scalability

and ability to mimic important aspects of tumor biology including

the tumor microenvironment. Specifically, the tumor microenvi-

ronment, including the ECM, blood vessels, signaling molecules

and inflammatory cells, plays an important part in malignancy

and metastasis potential of a cancer [109]. For example, breast,

prostate and lung cancer have all been linked to a high clinical risk

of metastasis [110]. The multistep process involves tumor separa-

tion from the primary site, tumor intravasation, tumor extravasa-

tion and, finally, colonization of the secondary tissue. Microfluidic

HoaC models can be engineered to recreate aspects of the tumor

microenvironment using a range of techniques in micropatterning

of ECM, microfluidic channel fabrication, 2D or 3D cell and

scaffold printing, among others [111,112]. Additionally, systems
www.drugdiscoverytoday.com 2145
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can be created that reproduce the cellular architecture necessary to

study tumor metastasis. Recently, a microfluidic system was used

to study circulating tumor cell (CTC) metastasis into bone and

liver [113]. The study also demonstrated inhibition of lung metas-

tasis using the drug candidate AMD3100. In another study, a

microfluidic 3D model was used to analyze the specificity of breast

cancer metastases to bone. The system consisted of osteodiffer-

entiated bone-marrow-derived stem cells, endothelial cells and

breast cancer cells and quantified the extravasation and prolifera-

tion of cancer cells over 5 days [113]. Systems have also been

developed to study tumor intravasation. For example, Zervanto-

nakis et al. demonstrated the utility of a 3D microfluidic model to

monitor and quantify tumor intravasation in real-time [114].

Cancer HoaC models can recreate important aspects of tumor

physiology including tumor architecture and metastasis. Utilizing

HoaC technology to model rare cancers could facilitate investiga-

tions into their underlying pathophysiology enabling the devel-

opment of more-effective therapeutic strategies.

Blood–brain barrier systems
The BBB is the highly regulated microvascular network that serves

as a border between the CNS, including the brain, spinal cord and

cerebrospinal fluid, and the blood. It comprises highly restrictive

capillaries composed of continuous, nonfenestrated endothelial

cells and lined with pericytes. The neurovascular unit (NVU)

includes ECM molecules and astrocytes, which ensheath and

connect neurons and blood vessels through polarized processes

that regulate the diffusion and transport of water, molecules and

ions for brain homeostasis, playing a part in neurodegeneration,

aging and drug delivery to the CNS [115]. BBB dysfunction is

relevant to a number of neurodegenerative disorders, including

Alzheimer’s disease, multiple sclerosis (MS), stroke and epilepsy,

and is a major driving force in other rare or monogenic disorders

including microcephaly, Allan-Herndon-Dudley syndrome and

Alexander disease [116]. However, difficulties in studying the

BBB in vivo and a lack of models for rare diseases make it difficult

to elucidate the precise role of the BBB in neurologic conditions.

HoaC systems, where the cellular and extracellular components

of the BBB can be readily modeled, represent an ideal platform for

determining the role of BBB disfunction in disease progression and

treatment. The BBB has been extensively modeled using HoaC

systems [117,118] characterized using transepithelial/transen-

dothelial electrical resistance (TEER), tight junction staining, pas-

sive diffusion of dextrans through the membrane, active transport

of molecules and the ability to block immune cell invasion [119].

Models range from microfluidic devices with representative shear

stress on endothelial cells to co-cultures of endothelial cells,

pericytes and astrocytes. Three-dimensional microfluidic models

have been constructed to provide relevant architecture [119,120]

and models have been applied for drug screening [121] and high

throughput screening (HTS) [36]. Furthermore, HoaC systems can

be used to study diseases where the precise role of the BBB is

unknown, or where BBB dysfunction is suspected to play a part;

multiorgan systems, which can include a BBB module, used to

study CNS rare diseases, would be useful to understand the role of

the BBB in disease progression or mechanisms. For example,

Huntington’s disease is a rare CNS disorder where cerebrovascular

changes occur, but BBB dysfunction specifically has not been
2146 www.drugdiscoverytoday.com
thoroughly investigated [122]. Similarly, BBB breakdown is a

component of MS and ALS [123,124]. Multi-organ systems where

the BBB is a component can address specific aspects of dysfunc-

tion, including whether BBB disfunction is causative or conse-

quential, and can be useful in determining treatment strategies.

A major challenge in research, diagnosis and treatment of

neurological and neurodegenerative disorders is symptom overlap

between diseases and cumulative disease effects, making a specific

disease difficult or impossible to distinguish. In particular, in the

case of rare diseases or diseases with a genetic component, indi-

vidual genotypes can exacerbate disorders, or lead to varying

progression and severity between individuals. Identification of

many forms of diseases such as dementia, and concurrent inci-

dence of multiple disorders, has driven research into more-precise

diagnostic tools [125,126]; however, neurodegeneration exists as a

continuum and not all disorders can be discretely classified [127].

In combination with iPSC technology, HoaC systems with a BBB

component could be useful for research into treatment strategies.

The ability to address permutations of mutant and healthy BBBs

alongside other diseased CNS components would facilitate inves-

tigations into the causative role the BBB has in rare disease

progression. For more individualized treatment, HoaC technology

could be used to reconstruct the exact disease state of a patient,

including any mutations that would affect the BBB and CNS,

enabling personalized research or testing of therapeutics.

Liver models
The addition of a liver component to a HoaC system is useful for

studying the metabolism of drugs and the differences in toxicity

between parent compound and metabolites. HoaC systems can be

beneficial to understand rare liver diseases such as alpha-1 anti-

trypsin deficiency and Alagille syndrome. Owing to the difficulties

of in vitro culture of isolated hepatocyte (i.e., in vitro cell degenera-

tion) Li and colleagues developed a method to form small hepato-

cyte aggregates on collagen micro-islands using primary rat

hepatocytes. These micropatterned hepatocytes enabled cell sur-

vival with normal functionality (albumin production and induc-

tion of CYP450 drug metabolism enzymes) [128]. In 2016, Bhise

et al. created a liver-on-a-chip device for toxicity testing by com-

bining bioprinting of hepatic spheroid-laden hydrogel constructs

and bioreactors using human hepatocytes. This system was able to

maintain hepatocyte functionality over a 4-week period [129].

Recently, a liver model was integrated into a 4-organ system

and maintained function for 4 weeks [31].

Cardiac models
Rare cardiac diseases can also be addressed by HoaC technology.

Relevant heart-on-a-chip devices can potentially assess real-time

contractile force, as well as electrical, speed and frequency of

cardiomyocytes. In 2008, Kim et al. developed a methodology

to assess cardiomyocyte contractility by placing them in a 3D

microenvironment using cantilevers [130]. Sidorov and co-work-

ers developed a wire platform that allows mechanical and electri-

cal characterization of 3D cardiac tissue constructs that can be

valuable to study cardiac diseases and for drug development [131].

Stancescu et al. developed a human stem-cell-derived cardiomyo-

cyte platform that was able to model electrical readouts and force

in the same system (Fig. 4) [132]. These technologies can be
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FIGURE 4

Key elements for a platform for determining cardiac physiology using human cardiomyocytes. Cardiac function was extrapolated from measurement of rhythm
generation (frequency and amplitude), conduction velocity, action potential length (QT interval) and force generation of the heart (a) schematic of the system
used to pattern SAMs on microelectrode arrays (MEAs) (top). Phase contrast micrograph of patterned human-derived cardiomyocytes on top of substrate-
embedded extracellular electrodes. Immunostaining verified that human-derived cells differentiated to cardiomyocytes (middle) and exhibited cardiac rhythm
generation as measured by the embedded electrodes (bottom). (b) Diagram of the cantilever-based force measurement system (top) cardiomyocytes integrated
into the BioMEMs device and immunocytochemistry indicating cardiac alignment along the cantilever (middle). Example traces of deflection and torsional force
with the device after myocyte contractions (bottom) [132].
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assembled into microdevices for the development of a heart-on-a-

chip system. Wang et al. developed an interesting heart-on-a-chip

device that proved to be useful to provide new insights into the

pathogenesis of Barth syndrome – a rare cardiac disease – using

patient-derived iPSCs [54]. This study is one example of how HoaC

devices can make a significant impact on understanding rare

diseases and on orphan drug development.

Other systems and rare diseases
In addition to the models discussed above, HoaC platforms are

applicable to other rare diseases, including rare respiratory and

kidney diseases. Most rare respiratory diseases involve lung dam-

age; rare lung diseases can affect the lungs exclusively, as part of a

systemic disease, or can involve iatrogenic lung disease caused by

the treatment of a rare condition. Respiratory diseases include

vasculitides of the lung (granulomatosis with polyangiitis), micro-

scopic polyangiitis, eosinophilic granulomatosis with polyangiitis,

Behçet’s disease, Takayasu’s arteritis and anti-basement membrane

syndrome pulmonary alveolar proteinosis [133]. Lung-on-a-chip

models are valuable for studying the biological processes of lung
diseases for developing pharmaceutical treatments [134]. In 2010,

Huh et al. developed a lung-on-a-chip model that reconstituted

multiple physiological functions of a breathing lung. This device

was able to reconstitute the microarchitecture of the alveolar–

capillary unit by combining 2D cellular models with a BioMEMs

device, while maintaining alveolar epithelial cells at an air–liquid

interface, enabling analysis of the effect of these forces on different

pathological and physiological lung functions [135]. Most recent-

ly, other groups have also developed lung-on-a-chip models that

reproduced the functionality of the alveolar barrier using human

cells [136,137]. Moreover, in 2018, Jain and colleagues created a

human pulmonary thrombosis disease model. Bovard et al. devel-

oped an integrated lung/liver-on-a-chip device to study acute and

chronic toxicity of inhaled compounds [136,138].

The kidney is an important organ to consider in drug develop-

ment, because drug-induced nephrotoxicity is the main cause of

up to 25% of all cases of severe acute renal failure during treat-

ment, making it one of the major factors leading to drug develop-

ment failure [139]. There are �150 known rare kidney diseases

with an overall incidence of �60–80 cases per 100 000 in Europe
www.drugdiscoverytoday.com 2147
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and the USA [140] with two of the most common being focal

segmental glomerulosclerosis (FSGS) and atypical hemolytic ure-

mic syndrome (aHUS). There are currently no drugs for the treat-

ment of FSGS, and aHUS has only one drug that is approved for

treatment in the USA. Kidney-on-a-chip models could be used for

the development of orphan drugs for these diseases; however,

these models are still in early development, with most devices

using animal cells instead of human cells. Wang et al. constructed

a glomerulus-on-a-chip device with isolated rat glomerulus and

established an in vitro disease model for diabetic nephropathy

induced by high blood glucose [6]. In this model, glomeruli

functionality (barrier function and integrity) was maintained for

2 weeks [6]. Another interesting device was developed by Qu and

colleagues where they constructed the basic structure of a nephron

[139]. This nephron-on-a-chip device was constructed using pri-

mary rat glomerular endothelial cells, podocytes, tubular epitheli-

al cells, peritubular endothelial cells, renal blood flow involving

plasma proteins and glomerular filtrate flow. In this study, they

also showed that this microdevice was able to identify different

pathogenesis of cisplatin-and-doxorubicin-induced acute kidney

injury [139].

Concluding remarks and future directions
Rare diseases, which often have complex genetic and environmen-

tal causes, are difficult and expensive to study owing to a limit in

cases for study and a small market for testing and marketing

treatments. Even after the ODA, scientific resources and treat-

ments for rare diseases are low and few drugs aimed at treating

rare diseases exist. However, rare diseases affect > 25 million

Americans, and managing rare diseases can be socially and finan-

cially damaging for those who suffer from them. A major problem

in rare disease research is the lack of appropriate models for

studying the diseases and subsequently testing pharmaceuticals.

Animal models are expensive and are poor predictors of drug

response in humans and, although many isolated in vitro models

for rare diseases have been established, they often use animal cells

or immortalized/cancer-derived human cells, which show loss of

in vivo function or do not model crucial elements of human

physiology.

In addition to PBPK and PD models, microfluidic HoaC plat-

forms with circulating medium and multiple organ modules can

provide the unique advantage of modeling interaction between

human tissues by enabling the development of phenotypic mod-

els. When studying human drug metabolism, no compound acts

in isolation – in addition to affecting the target organ, adminis-

tration of a drug can result in toxicity and drug metabolites can

drive downstream effects or damage. For disease research, models

can be used to study disease by driving a change in the system and

monitoring response. For drug testing, multi-organ HoaC models

can analyze effectiveness of the drug on the target and effects on

other tissues, potentially on the same platform. Further, a disease
2148 www.drugdiscoverytoday.com
state can alter how drugs are metabolized, and dysfunction in

one organ can have a whole-body response. HoaC models are

capable of recapitulating drug response when the target organ or

other tissues are damaged or missing. HoaC models also enable

improved research into combinatorial drug treatment; it is

established that the optimal treatment of diseases is often a

combination of multiple drugs, strategized so that effectiveness

is maximized while toxicity and side-effects are minimized.

Potential combinations can be identified through HTS and

analysis of existing genetic and clinical data [11]. For rare

diseases, HoaC systems can be used as a platform to test new

drug combinations, providing data in cases where limited clini-

cal drug data exists; and models can be used to compare treat-

ment strategies for efficacy and toxicity directly in a

physiologically  relevant model.

Because of their flexibility in construction, HoaC systems are

useful tools for studying rare diseases. A DoaC-focused platform

can be tailored to represent a specific disease in one or all organ

modules, and blood-surrogate medium formulations can mimic

signaling molecules sent by other tissues. For a genetic element, as

genomic modification and iPSC technologies have improved,

options have expanded for modeling of rare diseases in vitro; with

the opportunity to drive specific mutations in addition to estab-

lished diseases, even in combination, research can be conducted

on cells of any organ in a diseased state, leading to a more

personalized approach to research and medicine. Furthermore,

patient-derived iPSCs can potentially be used to study an

individual’s disease state, which can include several specific muta-

tions and/or epigenetic modifications. Because one condition can

interfere with the response to treatment of another, HoaC model-

ing of rare diseases can be used to test personalized drug response

and side-effects [141,142].

Currently, the applications of HoaC systems have been limited.

Although many studies have established microphysiological tissue

interactions in vitro, and devices have been constructed containing

multiple organs relative to drug metabolism [41,42,143], a com-

plete model for the human body has yet to be developed. As a new

technology, areas of modeling relevant to rare disease are still

being developed; for example, many rare diseases feature inflam-

mation as a key disease driver, so the addition of an immune

system to multi-organ devices would be an important achieve-

ment toward the construction of reliable disease models. Never-

theless, over the past decade, HoaC technology has improved

greatly. Here, we have shown the latest advances in HoaC systems

and its promising potential for rare-disease research and orphan

drug development.
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